Scientia, Fortitudo et Virtus (Bilgi, Cesaret ve Fazilet)
genetik etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
genetik etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

1 Şubat 2017

Bilimin henüz cevaplayamadığı soru: Mühürlü (imprinted) genler!

dna-epiSorular daima gerçek, cevaplar çoğu zaman yanlıştır
Bu yazım oldukça ilginç,sıcak ve gündemdeki bir konu ile ilgili. Dolayısı ile hakkında çok az şey biliyoruz. Esasen bilimde her şey hakkında çok az şey biliyoruz!  (Not: Konu içinde kaybolan okuyucular, metin içinde verilmiş olan linkleri takip ederek, bu karmaşıklıktan biraz kurtulabilirler).
Neyse geçelim...
Memelilerin (ve bazı bitkilerin!) genomları boyunca bazı genler, anne veya babadan gelip gelmediklerini gösteren işaretler taşırlar. Hepimiz her otozomal (allozom denilen X ve Y kromozomlardaki genlerin dışındaki genler) genin iki kopyasını taşırız. Bir kopyasını annemizden, diğerini ise babamızdan miras alırız. Dolayısı ile, bu genlerin her iki kopyası (alel de deniyor) da işlevseldir.  Yani, anneden veya babadan kalıtılan normal homolog genler arasında bir fark olmadığı kabul edilmektedir. Bu, gerçekten de birçok gen için doğru kabul edilebilir (Kromozom ve genlerle ilgili bir yazımı burada okuyabilirsiniz).
Ancak son yıllarda biliyoruz ki,  bazı az sayıda genin durumu buna uymaz. Yani bu çeşit bir katlımda, iki alelin eşit olarak ifade edildiği fikri geçerli değildir. Bu genler anne veya babadan gelmesine dayalı bir işlev farkı gösterirler.  Her ikisi birden kendini ifade etmez. Dolayısı ile bu genler üzerindeki işaretler bir ebeveyn alelinin seçici şekilde ifade edilmesi ya da suskun kalmasını sağlarlar.  
Bu genlere İngilizce “Imprinted” genler deniyor. Dilimize bunu “mühürlü, damgalı, kapatılmış ya da baskılanmış” genler olarak çevirebiliriz (ben mühürlenmiş terimini tercih edeceğim!). Yani bir ebeveynden gelen kopya mühürlenmiş ve ifade edilmezken, diğer ebeveynden gelen kopyasında bu mühürlenme olmayıp, gen kendini ifade eder (yani bir RNA türü veya protein kodlar).
Damgalama işlemi, gamet dediğimiz yumurta ve spermde embriyoda inaktif olması hedeflenen gen kopyasının "işaretlenmesi" başlar. İşaret, genellikle genin promotorunu yapan DNA dizisindeki metilasyondur. Epigenetik bir işaret olan metil grupları DNA'daki sitozinlere eklenir (DNA’nın C ile gösterilen nükleotidi, yani harfi). Bu çeşit işaretleme özellikle gunain (G) ve sitozinlerin yan yana oldukları bölgelerde daha yaygın olur. Sitozinlere eklenen bu metil işarteleri, promotora ifade (transkripsiyon) faktörlerinin bağlanmasına engel olur ve promotorun önündeki gen ifade edilmez yani suskun kalır. Bu olay aynı zamanda birçok kanserde tümörleri baskılayan genlerin promotorlarında da olduğundan, kanserleşme görülmesine neden olur (Epigenetik ile ilgili yazılarımı buradaburada burada ve burada okuyabilirsiniz).
Omik çağında olduğumuzdan, bu tür genlerin tanımlanması ve işlevlerinin anlaşılması için “Imprintome” terimi de kullanılmakta. Bu konudaki çalışmalar, yavrularında susturulan anne ve babalık genlerinin tanımlanmasını hedef almaktadır.
Mühürlenmiş genlerin insandaki sayısı yaklaşık 100 kadar. En iyi çalışılmış üçünü örnek verirsek;
mouseigf2IGF2 geni insülin benzeri bir büyüme faktörünü kodlar. Bizler dahil diğer memelilerde bu genin babaden gelen kopyası (alel) ifade edilirken, anneden geleni suskundur. Eğer anneden gelen de ifade olsaydı kanser dahil bir ton hastalığa düçar olacaktık. Diğer bir gen ise IGF2 proteinini bağlayan ve adı IGF2r olan bir reseptörü (hücre yüzeyinde gömülü bir almaç) ifade eden reseptör geni. Bu genin ise anneden gelen kopyası ifade edilirken, babadan gelen kopyası ifade olunmaz.
Bir diğeri ise, XIST genidir. Bu gen bir RNA kodlar ve bu RNA dişilerin (ve kadınların) her hücresinde bulunan iki X kromozomundan birini inaktive eder (bu inaktif X kromozomına Barr cisimciği de denir). Bu inaktifleştirme tamamen şansa bağlı olduğundan (yani dişinin bazı hücrlerinde annesinden gelen X inaktive edilrken, bazı hücrelerinde babasından gelen X inaktive edilir), tipik bir mühürlenme olayı değildir. Ancak, dişinin embriyonik olmayan dokularında (örn., amniyon, plasenta ve göbek kordonu) sadece babadan gelen X kromozomu mühürlüdür (ayni inaktiftir).
Dolayısı ile, mühürlenmiş genler 20 bin küsur genden sadece 100 kadar olmalarına rağmen, bireyin hayat-memat meselesinde büyük rol oynarlar. Bu mekanizma çalışmasa idi canlı doğmamız bile muhtemelen zor olacaktı. Kopya hayvanlarda canlı döl elde edilme olasılığının% 1’lerde seyretmesi ve canlı doğsa bile yaşam süresinin oldukça kısa olmasının ana nedenlerinden birinin bu mühürlenmiş genlerden kaynaklandığı düşünülmekte. Dolayısı ile, genomik mühürlenmenin yaklaşık 150 milyon yıl önce, canlılarda doğum olayının ortaya çıkmasında rol oynadığı sanılmaktadır.
Evrimsel açıdan, bu mekanizmanın hamilelik sırasında anne ile yavrusunun sınırlı besin kaynakları için verdikleri mücadele (çıkar çatışması) ve annenin yavrusunu rahat doğurabilmesi için onu mümkün olan en küçük boyutta tutmayı sağladığı düşünülmekte. Bunun tersine,  babadan gelen mühürlenmiş genlerin ise yavruyu büyük yapma yönünde çalıştığı anlaşılmakta. Çünkü, ne de olsa baba ile bebek arasında bir çıkar çatışması yok. Onu doğuracak olan ve kanındaki besinleri onunla paylaşacak olan anne. Başka bir ifade ile, annenin bu konudaki genleri bencil davranıp, rezervleri yavrusu ile paylaşmada anne daha çok kendi sağlığını ön planda tutarken, babanın genleri ise yavru lehine çalışmakta. Annenin mühürlenmiş genleri açılıp ifade olursa çocuk küçük, babanın mühürlü genleri açılıp ifade olursa çocuk normalden büyük olacaktır. Her iki ebeveynin mühürlü genleri birbirinin etkisini yok ederse, çocuk normal büyüklükte olacaktır. Bu genetik çatışma veya savaş sadece hamilelik sırasında değil, doğumdan sonra bile devam eder. Örneğin, bu şekilde doğmuş ve babadan gelen mühürlü geni ifade eden dişi farelerin, kendi yavrularını beslemede isteksiz davrandıkları görülmüştür.
Mühürlenmiş genlerde meydana gelen anormallikler hayatın erken evrelerinde (döllenmeyi takiben yavru doğana kadar) kendisini gelişimsel ve sinirsel bozukluklarla ortaya koyarken, ileriki yaşmada ise kanserden, Alzheimer hastalığına ve bipolar rahatsızlık, şeker hastalığı, cinsel yöneliş, otizm, obesite ve şizofreniye kadar bir seri rahatsızlıkla kendini gösterebilir. Özellikle de mühürlenmiş genlerle ilgili rahatsızlıkların başında zamanla obezite ve tip 2 şeker hastalığına sebep olan ve 15 kromozom üzerindeki bazı genlerin işlevinin kaybolmasından kaynaklanan Angelman ve Prader-Willi Sendromu ile ilişkili olduğu bilinmekte.
imprintingHenüz cevaplanamayan soruların başında ise “mühürlenme mekanizması”nın nasıl çalıştığı geliyor. Her ne kadar sperm ve yumurtanın oluşumu sırasında, bu eşey hücrelerindeki kromozomların üzerinde yer alan genlerin epigenetik etiketlerinin silinip yeniden yazıldığını içerse de, konuyu anlamaktan çok uzağız. Son çalışmalar, metil gruplarından yoksun besin maddeleri ile beslenmenin, döllerde mühürlenmiş genlerinin ifade profillerini etkilediğini göstermektedir. Dolayısı ile mühürlenmiş genlerin çevresel faktörlerden yani fiziksel ve kimyasal ajanlardan etkilendiği düşünülmekte.

19 Mayıs 2016

Genler Kaderimiz mi? Yoksa Bizi Biz Yapan Genler Üstü Bir Durumda da mı Var?

Gen dışındaki olaylara gelmeden önce biraz gen ve genetikten konuşalım (yazalım). Sonra da bizi biz yapan şeyler sadece genlerimizde mi kodlu yoksa başka şeylerde mi var siz karar verin...

Hemen herkes "genetik" diye bir şey duymuştur. Adı üzerinde... Genlerle uğraşan bir alan! Bazen "kalıtım" olarak da bilinir. Annemizin "yumurtasından" ve babamızın "sperminden" bize aktarılan miras... Bu mirası aktaran moleküle DNA diyoruz.

Sperm ve yumurtada 23 tane DNA molekülü varken, vücudumuzu yapan 200 trilyon hücrenin her birinde 46 tane DNA molekülü var. Çünkü, 23 tanesi babamızın sperminden 23 tanesi de annemizin yumurtasından gelir.  Bu DNA molekülleri özel proteinlerle birleşir ve her biri bir kromozom yapar. Yani 46 kromozom! (sperm ve yumurtada 23'er kromozom). Dolayısı ile 23 çift!

Bunların 22'si mükemmel çift oluştururken, cinsiyetimizi belirleyen ve adına X ve Y dediğimiz kromozomlar mükemmel çiftler değildir.

Flöresan boyaların bağlı olduğu DNA dizileri kullanılarak işartelenen insan kromozomları (Buradaki bir erkek hücresindeki görünümdür. Bayan hücrelerinde Y kromozomu hariç diğer kromozom setleri aynıdır. Bayanda iki adet X bulunur)


Erkek isek, X kromozomunu annemizden, Y kromozomunu babamızdan alıyoruz. Böylece her hücremizde, her bir çiftin bir tanesinin annemizden ve bir tanesinin babamızdan geldiği 22 çift kromozomumuz ve bir de  XY çifti var.

22 çift kromozom için kadınlarda da aynı durum söz konusudur. Ancak, kadınların her hücresinde erkelerdeki XY kromozomları yerine, birinin anneden diğerinin babadan geldiği 2X kromozomu vardır ve birbirlerine oldukça benzerdirler. Yani, görünüşlerine bakarak hangisinin anneden, hangisinin babadan geldiğini anlayamayız.

Mükemmel çift oluşturan kromozomlarımızdan hangisinin annemizden hangimizin babamızdan geldiğini ayırt edemezken, X ve Y kromozomları bariz biçimde farklıdır. Çünkü, mikroskop altında X kromozomu Y kromozomundan 3 kat büyük görünür. Hatta, kromozomlar arasındaki en küçük kromozom Y kromozomudur. Bundan dolayıdır ki, İnsan Genom Projesinde dizisi ilk saptanan kromozom Y kromozomu olmuştur.

Daha da işi sıkıcı yapmadan, bu konuyu son bir şeyle bitireyim: erkek çocuğu olmayan beyefendiler, sakın ola ki hanımlarının üzerine kuma getirmesinler. Neden mi? Çünkü, erkek çocuğu olup olmayacağını tamamen erkek belirler de onun için... İçinde Y kromozomu olan sperm yumurtaya girerse çocuk erkek, içinde X kromozomu olan sperm yumurtaya girerse çocuk kız olur da ondan. Annenin tüm yumurtalarında X kromozomu olduğu için, onun yapacağı fazla bir şey yoktur.

Neyse konumuza dönelim... Genler Kaderimiz mi? Yoksa Bizi Biz Yapan Genler Üstü Bir Hafıza da mı Var?

DNA'ya baktığınız zaman onun çok da göz alıcı bir molekül olmadığını görürsünüz. Adına "nükleotid" denen 4 adet (A, G, C ve T harfi ile gösterilen) kimyasalın değişik tekrarlarından oluşan, uzun, birbirine saralı iki zincirden oluşan bir yapı. Dolayısı ile buna "DNA sarmalı" ya da "DNA heliksi" diyoruz. Geleneksel olarak, DNA molekülünü büyüklüğüne göre kromozomları sıralamışız. Yani, 1. kromozom en büyük DNA molekülüne sahipken, 22. kromozom en küçük DNA molekülüne sahip. Dolayısı ile, yukarıdaki 4 harften yaklaşık 250 milyon tane 1. kromozomda bulunurken, 22. kromozomda bu sayı yaklaşık 50 milyondur.

DNA moleküllerini yapan bu harfler birer şifredir. Şifrelerin bazıları 1000 harften daha uzun, bazıları 10-100 kadar kısa olabilir. Çoğu, 100-1000 arasındadır. Bunlara "gen" diyoruz. 4 harften oluşan bu sıkıcı şifreler hücrede belli makineler tarafından deşifre edilirler. Deşifre olan ürünler ise karmaşık yapısı olan proteinler veya yine sıkıcı tek düze dizileri olan RNA'lardır. Bunlara değinip konuyu daha da karmaşık hale getirmeyelim...

Bir benzetme yaparsak. DNA'yı çıplak vücutlarımıza benzetebiliriz. Elbise giymediğimiz sürece biri birimize az çok benzeriz. Baş, ayaklar,kollar, bacaklar... Ancak, elbiselerimiz giydiğimizde bir renk cümbüşü... (bir stadyumdaki seyircileri düşünün).


Çıplak DNA: sperm ve yumurtada DNA böyle bulunur.

Buna benzer şekilde, annemizin yumurtasındaki ve babamızın spermindeki DNA'lar da ana maddesi 4 nükleotid olan dizilerdir ve her insanda büyük oranda (%99.9) benzer dizilim gösterir. Yani hepimiz neredeyse aynıyız. Yani gen seviyesinde insanoğlu arasında sadece binde 1 bir fark var.

Peki nasıl oluyor da bu kadar farklı fiziki ve kişilik özellikleri gösteriyoruz?

Bunu şu an kimse cevaplayacak konumda değil ve bunun cevabı henüz ufukta bile görünmüyor.

Ancak...

Bir kere sperm yumurtayı dölleyince, her şey allak bullak olmaya başlar. Hem spermden gelen ve hem de yumurtada bulunan o yeknesak DNA moleküllerinin orasına burasına "küçük kimyasal gruplar" eklenmeye başlar. Böylece, çıplak DNA'lara kişiye özgü olarak elbise giyindirilmiş olur ve aynı DNA dizilerine sahip genleri olsa bile insanlar boy, kilo, davranış, hastalıklara meyil veya direnç, ömür uzunluğu gibi sayamayacağınız kadar konuda farklılıklara sahip olurlar. Aynı yumurta ikizlerinde bile bu farklılıklar ortaya çıkar. Çünkü, DNA'nın orasına burasına sonradan eklenen bu küçük kimyasallar (metil ve asetil grupları) onun aktivitesini dramatik bir şekilde değiştirir.

Giyindirilmiş DNA: Sperm yumurtayı dölleyince küçük kimyasal gruplar DNA'nın orasına burasına eklenmeye başlar ve onun işlevini tamamen değiştirebilir.

İşte, bunlara genetik üstü faktörler, ya da moda terimi ile "epigenetik" faktörler diyoruz. Son yıllarda yeni yeni anlamaya başladığımız bu çeşit bir değişimin bir "hafıza" misali genler gibi nesilden nesile de geçebildiği konusunda raporlar var. Örneğin, genlerde bir değişiklik yapmayan belli kimyasalların koklatıldığı hayvanların yavrularının da bu kimyasallara aynı tepkiyi gösterdikleri rapor edildi.

Tabi bu durum kitaplarda yazılana oldukça ters. Çünkü, günümüzde kalıtımda "gen merkezli" ve "doğal seçilime dayalı" evrim görüşü hakim. Eğer yukarıdaki durum gerçekse, bu görüşlerinde oldukça revize edilmesi gerekecek. Artık kitaplarımızda ve makalelerimizde "sonradan kazanılan karakterlerin kalıtımı" konusunu da bunlara eklememiz gerekecek. Ancak, bunu yaparsak, 19. yüzyıla dönmüş olacağız. Neden mi? Çünkü, Lamarckism bu çeşit bir kalıtımı öne sürüyor da ondan. Taa o zamanlar, Fransız biyolog Lamarck sonradan kazanılmış karakterlerin de bir sonraki nesle geçtiğini ileri sürmüştü (Yüksek dallardaki yaprakları yemek için uzanan zürafaların, boyunlarının uzaması! ve bunun nesilden nesile geçmesi gibi bir şeyler hatırlıyorsunuzdur).

Örnek mi istersiniz? alın size "mühürlenmiş genler" diye bir şey...

Anne ve babamızda bunlardan 100 kadar var. Normal kalıtımın dışında bir davranış gösteriyorlar. Bu genlerin her biri için annemizden ve babamızdan birer kopya (allel) alıyoruz. Ancak, bireyden bireye fark gösteriyorlar. Anneden gelen kopya işlevsel ise, babadan gelen kopya "mühürlenmiş" oluyor. Veya tersi. Aynı bireyde her iki kopya birden işlevsel olmuyor. Yada her ikisi mühürlenmiş olmuyor.

Yukarıda, bolca X ve Y kromozomlarından bahsettim. Epigenetikle ilgisinden dolayı bu cinsiyet kromozomlarına tekrar dönelim...

Her erkeğin vücudundaki hücrelerde bir X ve bir Y var. Ancak her kadının hücrelerinde 2 X kromozomu var. Gen dozu (sayısı) bakımından, kadının daha fazla gene sahip olduğu açık. Ancak, erkekle kadının hücrelerindeki bu gen dozaj farkı tam bilemediğimiz bir mekanizma ile ortadan kaldırılıyor. Nasıl mı? kadının XX kromozomlarından biri kapatılıyor yani "mühürleniyor". Kadında kapatılan X kromozomu annesinden de babasından da gelmiş olabilir. Esasen, kadınlarda vücut bu kromozomlar bakımından bir çeşit "mozaik" yapı gösterir. Vücudunun belli doku ve organlarında annesinden gelen X mühürlenmiş iken, vücudunun başka taraflarında babasından gelen X mühürlenmiş olabilir. Yani tam bir mozaik yapı... Erkeklerde ise bu durum söz konusu değil. Çünkü erkeğin vücudundaki tüm X kromozomları annesinden gelir, Y kromozomları ise babasından.

İşi daha da karmaşıklaştıralım mı?...

Kadının her hücresindeki 2 X kromozomundan birinin kapalı veya mühürlü olduğunu söylemiştim. Bu her zaman böyle değil... Açık yani iş gören X kromozomuna bir bir şekilde hasar görür ve işlevini yitirirse, mühürlenmiş olan X'in mührü açılır ve hasar telafi edilir. Erkeklerde bu tür bir hasar telafisi söz konusu değildir. Çünkü, tek bir X'leri var ve hasar görürse hapı yutar!!! Bu nedenledir ki, eşeye bağlı genetik hasar ve ölümlere erkekler kadınlara göre 5 kat daha yatkındır. İşte tüm bunlar da "gen üstü" nedenlerden kaynaklanıyor. Bu, bize kadınların hemen her toplumda erkelerden neden 5 ila 10 yıl daha fazla yaşadıklarını belki açıklıyordur...

Sonuç olarak, tüm bu konularda (genetik ve epigenetik) bilgi ve bildiklerimiz henüz çok primitif ve sandığınız gibi her şey genlerle belirlenmiyor. Yediğiniz, içtiğiniz besinlerdeki kimyasallar da sizi şekillendiriyor, hayatta yaşadığını tecrübeler de. Ve bunlar bir şekilde kayıt altına alınıp gelecekteki nesil ve nesillerinize geçiyor.

6 Nisan 2016

Dünyadaki Tüm Bilgiyi Birkaç Gramında Depolayabilecek Bir Molekül: DNA

DNA'yı herkes biliyordur. Kitaplarda veya popüler medyada şu güzelim biri birine sarılmış iki zincirli sarmal. Her canlıyı yapan, bilginin nesilden nesile aktarımını sağlayan, genetik bilginin şifre şeklinde kaydedildiği molekül.

Çok basit bir dil kullanıyor. Bu dilde sadece 4 harf var: A, G, C, T. Bizim alfabe gibi 29 harf değil. Gözle görülen veya görülmeyen, bakteriden, böceğe, bitkiye, file, insana her canlının ortak alfabesi.

Bu harflerin farklı sayı ve sırada tekrarlanması ile yeryüzündeki tüm canlıları yapan moleküldür DNA. Tüm bir insanı yapan DNA'da 6 milyar harf var. Ağırlığı ise sadece 6 pikogram! Yani, 1 gramın trilyonda biri (1 gram= 1,000,000,000,000 pikogram). Gözle görülemeyen bir hücreden 10 kat daha küçük bir ortama, yani hücre çekirdeğine sığıyor (İnsan genomu ile ilgili bir yazımı burada okuyabilirsiniz?.

Bir özelliği, oldukça kararlı olması. Bir reçine içine koyup saklarsanız 4 milyar yıl dayanır. Yani, dünyadaki tüm yaşamdan daha eski.Açık ortamda, yarılanma ömrü 10 bin yılın üstünde.

Tüm kitaplarımız 29 harfle yazılmamış mı? 

Her alfabe harfini, DNA şifresi ile yazabilirsiniz (örn, H= CAG). İnsan için verdiğimiz örneğe dönersek: 6 milyar DNA harfi, 2 milyar alfabe harfine karşılık gelir. 2 milyar harfle, her sayfasında 1000 harf bulunan ve her biri 2000 sayfa olan 1000 adet kitap yazabilirsiniz. Bunu sadece 1 pikogram DNA ile yaptığınızı unutmayınız. Dolayısı ile her biri 1000 sayfa 1 katrilyon kitabı 1 gram DNA'ya sığdırabilirsiniz. 

Dünyada yaklaşık 130 milyon kitap olduğu düşünülüyor (Ref: Google). Dolayısı ile 1 gram DNA'ya sadece tüm bu kitaplardaki bilgiyi değil, aynı zamanda tüm resim, video ve ses kayıtlarını da sığdırabilirsiniz.

Böylece,  dünyamızın ürettiği tüm bilgiyi DNA şifresi olarak kodlayabilirsiniz. Bu DNA'yı hücrenin içine atıp saklayabilirsiniz. Sentetik (yapay) hücre ile ilgili yazımı burada okuyabilirsiniz. Ancak, hücreler o kadar dayanıklı değildir ve binlerce yıl dayanmazlar. Bu DNA'yı hava almayan bir kapsülün içine koyup saklarsanız milyon hatta milyarlarca yıl dayanır.

Neye mi yarayacak?

Dünyadaki tüm yaşamın ve bilginin ortadan kalktığı bir kıyamet senaryosunu düşünelim! Milyarlarca yıl geçti ve bir şekilde bugünküne benzer insanoğlu (veya daha zeki yaratıklar!) ortaya çıktı. Bu kapsülü alıp bir DNA dizgi belirleme makinesinde okutacaklar ve bu bilgiyide bir bilgisayara yükleyip bilgisayar dili olan 1 ve 0'lara çevirip tüm yazı, resim, videolara, ses kayıtlarına ulaşacaklar.

Bizim için ne mi diyecekler?
"Atalarımız zeki yaratıklarmış. Sonlarını getirecek felaketi öngörmüşler. Ancak, hırs ve açgözlülüklerinin kurbanı olmuşlar".

29 Mart 2016

İlk Yapay (Sentetik) Hücre: Tanrının Rolünü Oynamak mı?

Hiç sanmıyorum... Neden mi?

Buna birazdan döneceğim. Ancak, bu çalışmayı rapor eden grup hakkında önce biraz tarihçeye...

J. Graig Venter (JCV) bir biyolog ve aynı zamanda zengin bir iş adamı. O kadar zengin ki, kendi adına Maryland ve California'da iki araştırma enstitüsü (JCVI) ve Nobel Ödülü almış bir bilim adamını da içinde bulunduran 400'ün üzerinde çalışanı var.

Resim: (soldan sağa) J. Craig Venter. Hamilton O. Smith (Nobel Ödüllü), Dan Gibson, Lijie Sun, John Glass, Krishna Kannan, John Gill, and Clyde A. Hutchison III, . (Resim: J. Craig Venter Institute)

JCV ve grubunu aynı zamanda insan genom projesinden tanıyoruz. Bu konudaki bir yazımı burada okuyabilirsiniz.

Aynı grup 2010 yılında kimyasal olarak sentezlenmiş tüm bir bakteri (Mycoplasma mycoides) genomunu, genomu çıkarılmış boş bir bakteri (Mycoplasma capricolum) hücresine aktardıklarını rapor etmişti. Yeni oluşturdukları bu bakteriye "JCVI-syn1.0" adını veren grup, makalelerine cüretkar bir başlık atmışlardı: "ilk sentetik bakteri yaratıldı" (Science, 2010). (genom= hücredeki tüm DNA)

Aynı grup geçen hafta içinde minimum sayıda genle yaşamını devam ettirebilen ilk yapay bakteri genomunu "tasarlayıp sentezlediklerini" bildirdi (Science, 25 Mart 2106). Bu bakteriye de "JCVI-syn3.0" adını verdiklerini görüyoruz.

Grubun 2010'da kullandıkları provokatif "yaratmak" terimini, haklı bilimsel tepkiler sonucu yeni çalışmalarında "sentez" olarak yumuşattığını görüyoruz.

Neyse. konumuza dönelim.

Bakteri hücresi "yaratıldığı!" için bakteriden başlayalım...

Bakteri tek bir hücreden oluşur, fakat aynı zamanda bizim gibi trilyonlarca hücreden oluşan bir canlı gibi yer, içer, davranır. Yani, kısaca bir bakteri hem tek bir hücredir hem de bir organizmadır.

Bitki ve hayvanlara göre bakteriler çok daha basit organizmalardır. Yaşamak ve çoğalmak için de daha az şeye ihtiyaç duyarlar. Genomları küçük ve binden az geni olanları vardır. 

Grubun, 2010’da referans aldığı ve genomunu sentetik olarak kurduğu bakteri, genomu en küçük (yaklaşık 1 milyon harf) bakterilerdendi.

Bir karşılaştırma yaparsak: bir insan hücresinde yaklaşık 20 bin, tipik bir bakteri olan E. coli’de yaklaşık 5 bin gen (protein kodlayan) var. Genin ne olduğunu daha önce burada yazmıştım.

Grubun geçen hafta içinde rapor ettiği yapay bakteri (Syn3.0) “minimal” bir bakteri. Bu bakteri grubun daha önce oluşturduğu sentetik 516 gene sahip Syn2.0 bakterisinden 43 genin daha çıkarılması ile elde edildi. 

Resim:15 bin kez büyütülmüş EJCVI-Syn 3.0 hücrelerinin elektonmikrografı. 

Syn3.0 başka bir hücreye ihtiyaç duymadan tek başına serbest yaşayabilen genomu en küçük bakteri olmaya aday. Bu yapay bakteride sadece 473 gen var. Bunların 324’ü (3’te 2’si) hücrenin sadece yaşamını devam ettirmesi ile ilgili, diğer 149 genin ise foksiyonu tam bilinmiyor.

Bu sentetik bakteriden daha az gene sahip doğal bakteriler var. Ancak, bunlar serbest yaşayamıyor. Bir hücrenin içinde parazit gibi yaşamaya mahkumlar. 

Az sayıda gen bakımından rekor ise böcek hücreleri içinde yaşayan Nasuia. Bu bakterinin sadece 137 geni var.

Çalışmanın şunu gösterdiği ileri sürülüyor: Tüm canlılarda genlerin çoğu ihmal edilebilir. Yani bu genler aksesuar işlevi görüyor. Bunlar olsa da olmasa da canlı (veya hücre) yaşamını devam ettirebilir.

Peki böyle bir çalışmanın amacı ne? Para! Bir ürünü maksimum yapmak.

Şöyle bir düşünün. Hücrede 5000 gen olsun ve bu genleri kullanarak hücre 100 adet çeşitli endüstrilerde kullanımı olan ürün üretsin. Ancak, bu 100 ürün arasından sadece bir tanesi özel bir hastalık için ilaç ve siz sadece onu üretmek istiyorsunuz. Diğer tüm genleri kapatır, hücreyi rezervlerini bu ilaç için kullanmasını sağlarsanız istediğiniz ürünü 100 kat fazla elde edersiniz.

Sorulacak sorular ise, bu ihmal edilebilir genleri çıkarıp atarsanız canlının ne tür badirelerle karşılaşacağı. Özellikle bizim gibi karmaşık yapılı ve eşeyli üreme yapan canlılarda üreme sorunlarından tutun zekâ seviyesine ve sayısız hastalıklara kadar bir ton sorunla karşılaşılmayacağını kim garanti edebilir?

İnsan eli ile yapılmış hilkat garibesi canlıların uzun vadede dünyamızdaki doğal dengeleri nasıl etkileyebileceği etraflıca düşünülmediği görülüyor. Daha doğrusu, “ben para kazanayım da, benden sonrası tufan” mantığı…

Sadede, yani “yaratma”ya gelince…

Craig Venter ve ekibinin yarattığı aslında hiç bir şey yok. Olsa olsa bir Legonun parçaları ile yeni bir araç yapmışlar. Kullandıkları tüm malzeme (enzimler, vs) ve Legolar (DNA ve yapıtaşları) ise doğadan. Yani var olandan alınma.

Kısaca, “yaratma” kastini aşan bir ifade olurdu ve bu nedenledir ki ilk çalışmalarında kullandıkları bu kelimeyi, yeni çalışmada kullanmamışlar.

Hem bilimsel hem de dinsel olarak isabet etmişler.

21 Ocak 2016

Bilimde Açgözlülük, Abartı, Propaganda, Popülizm, Çıkarcılık: CRISPR-Cas9 Vakası! (Greed, Exaggeration, Propaganda, Populism and Self-interest: The CRISPR-Cas Case!)

Bilimde olmaması gereken başlıktaki şeylerin hepsi 2012 yılında keşfedilen “CRISPR-Cas9 Genom Edit Etme” için mevcut. Bu konuyu daha önce burada ve burada yazmıştım.

Şunu hemen söyleyeyim. Çok yeni bir keşif olmasına rağmen, kolay, ucuz ve sonuç alıcı olmasından dolayı bu teknolojinin PCR gibi yaygınlaşacağı sanılıyor. Bugün nerede ise CRISPR-Cas9 sistemini duymamış bir moleküler biyologa rastlayamazsınız. Herkes ondan bahsediyor. Hatta gelecek yıl veya önümüzdeki birkaç yıl içinde bu sistemi keşfedenlerin Nobel Ödülü alacağı üzerine bahisler bile var.

Ancak, CRISPR-Cas sisteminin kim tarafından ilk keşfedildiği şimdilerde büyük tartışma konusu. Şu anda dünyada binlerce laboratuar bu sistemi kullanmakta ve onlarca kişi ise, BEN, BEN deyip sistemi ilk keşfedenlerin kendileri olduğunu öne sürmekte. Hayatımda, bilimsel bir buluşun bu kadar sahibi olduğuna rastlamadım. Patent başvuruları, çıkar çatışmalarından kaynaklanan davalar havada uçuşuyor.

Daha önceki bir yazımda, yaygın görüşün CRISPR-Cas’ın iki bayan bilim insanı tarafından olduğu yönünde idi ve hala da o görüşümü muhafaza ediyorum (bkz. Gen ve Genom Edit Etme). Çünkü, CRISPR-Cas sistemi 2005 yılından beri bilinmesine rağmen, onun etkili bir genom edit etme aracı olabileceğini ilk defa bu iki bayan 2012 yılındaki makalelerinde gösterdiler ve bunu da bilim aşkı için yaptılar. 

Ancak, paranın ve ünün peşinde olan büyük araştırma enstitüleri, müdürleri ve ilaç şirketleri bir algı yaratma peşindeler. Bu sistem bilmem ta 1990’larda hangi doktora öğrencisi tarafından bulunmuş da, ancak uygun dille bunu yayınlayamamış da, vs. vs. vs… Bunların amacı, bakteriler tarafından milyarlarca yıldır başvurula gelen, tamamen doğal olan bu sisteme sahip olup, yapacakları ufak tefek değişikliklerle onu patentlemek ve hem parayı cebe indirmek hem de üne kavuşmak. Yani,  bunlar konuyu saptırarak, kendi yaptıklarını öne çıkarır, işin esas sahiplerini ya tamamen görmezden gelirler ya da sadece satır aralarında yer verirler.

Halkın ve okuyucunun dilinden iyi anlayan, etkili yazı yazma sanatını iyi bilen bu kişi ve kurumlar, ayarladıkları iyi dergilerde yayınladıkları perspektif ve yorumlarla işin mükâfatının peşindeki gözü açık ve aç gözlülerdir bunlar. Bunlar bilim sadece şan, şöhret ve para için yaparlar. Bunların biliminden insanlığa hiç bir fayda gelmez, sadece onu cebimizi boşaltmanın bir aracı olarak kullanırlar.

Çünkü ileride bu sistemin genom ve gen edit etmede standart olacağı ve “tasarım bebeklerden” tutun, tek genle geçen birçok genetik hastalığın düzeltilmesi, yüksek verimli hayvan ve bitkilerin geliştirilmesi gibi sayısız alanda uygulama bulacağı düşünülmektedir. Henüz, kliniğe gelmemesine rağmen, bu teknikle insan embriyolarında veya eşey hücrelerinde nokta atışı ile bazı hastalıklara sebep olan gen mutasyonları tamir edildi. Dolayısı ile uygulama potansiyeli oldukça yüksek ve yaygın kullanımının neredeyse bugün hemen her biyoloji, genetik ve klinik laboratuarda bulunan PCR gibi olacağı düşünülmekte. Tek fark, bu sistemin PCR gibi pahalı bir araç değil de, amaca göre dizayn edilmiş ucuz bir ifade vektörü (DNA molekülü) olmasıdır. Tabi, açgözlü kişi ve kurumlar, bu kadar etkisi olacak ucuz bir sitemi nasıl yapıp edip halkın canına okumak için (maddi olarak) kullanabilecekleri sorusunun peşindeler. 


Umarım, bilim politikalarımız (tüm dünyadan bahsediyorum) ve bilimi bilim için yapan insanlar, yukarıda bahsettiğim tipteki açgözlü kişi ve kurumların böyle güzel bir bilimsel buluşu kendi amaçları doğrultusunda pazarlayıp, şişik egolarını daha da şişirmelerine engel olurlar. Bunu da, krediyi esas sahibine vererek başarabiliriz. 

Not: İngilizce tarama yapıldığında, yazımın çıkması için başlığı aynı zamanda bu dilde yazdım. 

30 Aralık 2015

Yılın Buluşu: Gen ve Genom Edit Etme

Hemen tüm bilim haberi ve yayını yapan sitelerde 2015 yılının en büyük buluşu olarak 2005 yılında keşfedilen CRISPR-Cas9 verildi.

Peki nedir bu her yerde bahsedilen CRISPR-Cas9?

Bizim için yeni olsa da bu olay bakteriler tarafından milyonlarca (eğer birkaç milyar değilse) başvurula gelen ve bakterileri yabancı düşmanlarına (örn, virüslere) karşı koruyan doğal bir bağışıklık sistemidir (insandakine benzer).

Ancak, insanoğlunun birçok genetik  (özellikle Huntington hastalığı gibi tek genle geçen) hastalığı ortadan kaldırma potansiyeli olduğu düşünülen bu olayı keşfetmesi için birkaç milyar yılın geçmesi gerekirmiş. 

Elli yıl önce, rekombinant (yeniden birleştirme) DNA devrimi yine bakterilerdeki kısıtlama (restriksiyon) enzimlerinin keşfedilmesi ile başlamıştı. Bu enzimler sayesinde modern biyoteknoloji endüstrisi doğudu ve günümüzde insülinden interferona ve büyüme hormonuna kadar kullandığımız birçok ürünün bakterilere yaptırılması mümkün oldu.

On yıl önce ise bilim adamları, bakterilerde kümelenmiş ancak düzenli serpiştirlmiş kısa ters tekrarlar içeren ve "rehber RNA" olarak adlandırılan RNA içeren bir Cas enziminin varlığının olduğunu ve bunun hücreye giren yabancı DNA'lara karşı bir savunma mekanizması olarak işlediğini gösterdiler.

(Büyütmek için resmin üzerini tıklayın)

Dolayısı ile uygun rehber RNA'lar kullanılarak herhangi bir gendeki belli bölgenin hedeflenebileceği ve uygun şekilde değiştirilebileceği anlaşıldı.

Böylece, dizayn edeceğimiz RNA'ların Cas sistemi ile bir araya getirilmesi ile genomun veya genin istenen bölgesi hedef alınabilr ve değiştirilebilirdi. Öyleki, tek bir harf (nukleotid) değişkiliği yapmak bile bu sistemle mümkün gibi görünüyor.

Bu sistemin ileride klinik kullanıma sunulması ile birçok genetik hasatlığın daha embriyo safhasında düzeltilebileceği düşünülmektedir. Yani, bu sistemin gen tedavisinden "tasarım bebekler"e kadar etik veya etik olmayan birçok yönde (iyi veya kötü) kullanım potansiyeli bilinmektedir.

Ancak, henüz günümüzde bu mümkün görülmemekte ve hatta mümkün olsa bile, bu sistemle yapılacak bir genetik değişikliğin ilgili bireyin ilerideki yaşamı ve onun soyu konusunda bir ton cevaplanması gereken soru bulunmaktadır. Örneğin, bu sistemle yapılacak bir genetik düzeltmenin ileride kalıcı kalıtsal değişikliklere neden olabileceği kuşkusu vardır. 

Ancak, bana göre bu keşif konusunda kesin olan şey, onun kaşifleri olan Jennifer Doudna and Emmanuelle Charpentier'e uzun yıllar beklemeden bir Nobel Ödülü kazandıracağıdır.
CISPR-Cas genom edit etme tekniği ile ilgili bir video kaydı aşağıda izleyebilrsiniz:

23 Aralık 2015

İki Emekli Bilim Adamının Hikâyesi: Genetikçiye karşı Biyokimyacı

Biyokimyacı DOUG ve onun genetikçi arkadaşı (ki onu kimse tanımaz) iki emekli Profesördür. Bir tepenin eteğinde bulunan evlerinde her sabah kahvelerini içerken ve her öğleden sonra biralarını yudumlarken DOUG ve genetikçi arkadaşı birçok bilimsel konuyu tartışır ve kafa yorarlarmış. 

Bir sabah, sohbetleri hemen evlerinin aşağısında kurulu olan bir araba fabrikası üzerine yoğunlaşmış. DOUG ve arkadaşı sabah fabrikaya bir kısmı tulum giymiş işçi, diğerleri takım elbise-kravatlı, ellerinde Bond çanta iki grup insanın girdiğini ve akşama doğru fabrikanın diğer ucundan yeni arabaların çıkıp, sağa dönüp bir park yerinde dizildiklerini izlerlermiş.

Ömürlerini üniversitede araştırma ile geçirmiş DOUG ve genetikçi arkadaşının arabaların nasıl çalıştığı konusunda en ufak bir fikirleri yokmuş. Her ikisi de buna iyice kafayı takmış ve farklı alanlardan gelen bilgi birikimleri ile arabaların nasıl çalıştığını anlamak için farklı çalışma metotları denemişler. 

DOUG zengin bir adam olduğu için (biyokimyacıların çoğu gibi) hemen 100 araba satın almış, hepsini eritmiş ve analizleri sonucu eritilmiş maddenin % 10 cam, % 25 plastik ve % 60 çelikten meydana geldiğini ve ayrıca % 5 oranında bilinmeyen maddelerden oluştuğunu belirlemiş. DOUG arabaların hangi materyallerden ve hangi oranlarda yapılmış olduğunu belirlediği için buna çok sevinmiş. Bir sonraki fazdaki çalışmasında, bu belirlediği kimyasalları bulduğu oranlarda karıştırdığında nasıl bir sonuç çıkacağını merak etmiş. Dolayısı ile sabah kahvesi ile öğleden sonraki bira molaları arasındaki zaman içinde oldukça yoğun çalışmaya başlamış. Ancak, uygun oranlarda karıştırdığı bu materyallerden her defasında arabaya benzer herhangi bir şeyin çıkmadığını görünce de hayal kırıklığı yaşamış. 


Bu sırada fazla çalışmaya alışık olmayan DOUG’un genetikçi arkadaşı (genetikçilerin çoğu gibi) daha ucuz ve daha az yorucu bir metodu denemekle meşgulmüş. Bir gün sabah kahvesinden önce yamaçtan aşağı inmiş ve tulumlulardan gelişi güzel birini seçmiş, ellerini bağlamış.

Kahvelerini içtikten sonra biyokimyacı tekrar iş elbisesini giyip, alev makinesi ile yeni materyaller eritip bunların kimyasal analizlerini yapmaya koyulurken, genetikçi ikinci bir kahve eline alıp evin etrafında bir tur attıktan sonra oturup Genetik dergisinin son sayısına bakmaya koyulmuş. Ancak, bu sırada aklı da elini bağlamış işçiden yoksun çalışacak fabrikada imiş ve ne olacağını merakla düşünüyormuş.

O gün öğleden sonra her ikisi biralarını yudumlamak için oturduklarında, DOUG terini silip şöyle bir nefes aldıktan sonra genetikçi arkadaşına dönmüş ve heyecanla anlatmaya başlamış:

“Bu günkü çalışmalarımda özellikle sürekli olarak % 25 plastik fraksiyonu ve % 75 oranında çelik fraksiyonu olan bir parça ile karşılaştım ve bu parça şu şekilde bir şey (bu sırada önündeki peçetenin bir köşesine bir direksiyon şekli çizmiştir). Şu sıralar, bunun herhangi bir aktiviteye sahip olup olmadığını anlamak için bu karışıma cam fraksiyonu ekliyorum. Her ne kadar şu ana kadar pek bir şey bulamadıysam da, cam fraksiyonunun ilavesi ile umarım bir yerlere varırım. Eğere elimde daha büyük bir alev makinesi olsaydı belki daha iyi sonuçlar elde ederdim”

DOUG bunları anlatırken, genetikçi arkadaşının bir kulağından girip öbüründen çıkıyormuş. Çünkü onun aklı fabrikadaymış. Akşama doğru arabalar birleştirme platformundan çıkıp, park yerine dizilirken hemen bir şey fark etmiş. Tüm arabalarda yan camlar takılı fakat ön ve arka camlar yokmuş. DOUG’ın konuşmasını bitirmesini bekledikten sonra (genetikçiler çok kibar konuşmacılardır) genetikçi DOUG’a dönüp;

“Bu gün iki gerçeği belirledim. Ellerini bağladığım işçi arabaların ön ve arka camlarını takmaktan sorumlu ve ayrıca ön ve arka camların takılması yan camların takılmasından bağımsız bir proses”

Ertesi gün, genetikçi başka bir işçinin ellerini bağlar ve akşama doğru platformdan çıkan araçların park yerinde biri birinin üzerine yığıldıklarını ve bu arabalarda tek bir şeyin eksik olduğunu görür: biyokimyacının kendisine bir gün önce göstermiş olduğu DİREKSİYON.

O gece genetikçi DOUG’ı dehşete düşürecek sonuçlar açıklar: direksiyonlar arabaların sağa sola döndürülmesinden ve ellerini bağladığı ikinci işçi ise direksiyonları monte etmekten sorumludur.


Başarılarından cesaret alan genetikçi, ertesi sabah takım-elbise, kravatlı ve bir elinde Bond çanta diğerinde bir lazer pointer olan birinin (ki bu fabrikanın müdür yardımcısıdır) ellerini bağlar. O akşam DOUG ve genetikçi bunun arabalar üzerinde ne gibi bir etki ile kendini göstereceğini heyecanla beklemeye koyulurlar. Bu sırada her ikisi de belki de hiç araba oluşturulamayacağı konusunda spekülasyon yaparlar. Ancak, o akşam çıkan arabalarda herhangi önemli bir eksiklik olmadığını gördüklerinde oldukça şaşırırlar. Bunun üzerine, ertesi sabah her ikisi elerine ipleri alıp, fabrikaya giren bütün takım-elbise, kravatlı ve Bond çantalıları bağlarlar ve akşama yine önemli bir eksiklik olamadığını keşfederler.

Bu yazının orijinali için bkz.: Üniversite ve Toplum

29 Kasım 2015

100+ yıl yaşamak ister misiniz? (2)

İlk yazımda da (bkz. 100 yıl yaşamak ister misiniz? (1)) belirttiğim gibi toplumlarda "asırlık" insanların sayısı oldukça azdır. Örneğin dünya ortalaması 1 milyon nüfus başına sadece 40 kadardır ve ülkemizde ise 3000 kadar 100 yaş ve üstü insan vardır.

Peki bu insanların ortak özellikleri var mı? Uzun yaşam onların genlerinden mi yoksa çevresinden mi kaynaklanıyor? Yoksa her ikisi mi? Unutmayın, Çevre deyince sadece fiziki çevreyi kast etmiyorum. Yediğimiz içtiğimiz her şey, yaşadığımız ortam, arkadaşlarımız, soluduğumuz hava, yani genler hariç bu dünyada tecrübe ettiğimiz her şeyi kastediyorum.

Her ne ise, konuyu daha fazla eğip bükmeden sadede gelelim.

Bir kere şu andaki genetik yapımız ve dünyamız (yani çevre) göz önüne alındığında, 100 yaş yaşamak gerçekten olağanüstü bir şey. Çünkü, vücudumuz özellikle 50 yaştan sonra hızlı bir yıkıma uğrar ve ne yazık ki kendini çok az tamir eder. Diğer bir deyimle 100 yaşına doğru, bir tepeden aşağı giden, freni ve sürücüsü olmayan ancak hala tekerleri üzerinde olan bir araca benzeriz. Dolayısı ile 100 yaşına varmak o kadar zordur ki, 105 yaşına gelenlere "süper sentenerianlar" deniyor. Çünkü, bu yaşta bir günü bile yaşamak başarıdır. Genç bir birey için 5 yıl daha yaşamak nasıl olağan bir şeyse, 100 yaşlarına gelmiş bir bireyin 1 veya 2 yıl daha yaşaması aynı derecede olağan dışı bir şeydir.

Gelelim bizim bunu nasıl başarabileceğimize. Ne yazık ki bu, ne tek başına genetik tabanımızın sağlamlığına ne de tek başına çevreye bağlı. her ikisinin de ömür uzunluğunda büyük rol oynadığı aşikar. Yani sağlam bir genetik profiliniz yoksa, siz ne kadar iyi beslenirseniz veya cennet-mekan ortamlarda yaşarsanız yaşayın asırlık biri olamayacağız. Aynı şekilde, sağlam bir genetik dizgimiz olabilir, fakat hiç bir zararlı alışkanlıktan imtina etmiyorsak pek uzun yaşamayacağız demektir. Yani, genetik dizgimiz yazgımız değil.

Özür dileyerek sadede geleyim.

Asırlık insanlar üzerinde yapılan çalışmalar çok yeni. Bu çalışmalardan, gen-dışı çevresel faktörleri inceleyenlerin "asırlık" insanlar için elde ettikleri bazı ortak bulgular var (tabi ki bu uzun yaşayan insanların da kendine ait birinen diğerine farklı olan alışkanlıkları var).

Bu ortak özelliklerden en öne çıkan ikisi, hepsinin dingin bir hayatının (kaliteli bir uyku ve uyanıklık hali) olması ve beslenmede günlük gerekli olan kalorinin minimumu ile idare ediyor olmaları. Bu da vücuda alınanın tamamen kullanımı demektir. Gerçekten de, son çalışmalar yüksek kalorinin hücre ve vücudumuz üzerinde yıkıcı bir etki yarattığı ve bizi birçok hastalığa duçar ettiği yönünde. Çünkü, vücudumuzun ihtiyaç duyduğundan fazlasını aldığımızda, ortaya çıkan birçok ürün ve yan madde (kimisi zararlı) ile hücrelerimiz uğraşıp durmakta ve onu şekilden şekle sokmaktadır. Buda hücreyi ve genelde organizmayı zamanla yıpratır ve birçok şeye karşı hassasiyetini bozar.

Bu asırlık insanların genetik profilleri de onların uzun ömürleri için ipuçları veriyor. Bir kere hiç birinde kalp damar hastalıkları ve sinir dejenerasyonunda rolü olan genlerde ölümcül mutasyonlar (hasar) yok.

Lafı fazla uzatmadan (her ne kadar zaten uzadı ise de!) demem odur ki, uzun yaşam ne yazık ki tamamen elimizde olan bir şey değil ve uzun yaşamak için "git şunu yap, bunu yapma" diyecek sihirli bir formül de henüz bulunmamakta. Dünyamızın sonunu hep beraber getirmez isek (global iklim değişikliği vs)  ileride çocuklarımız ve torunlarımızın bizden daha uzun yaşamaları olası. Çünkü, unutmayalım ki 50 yıl öncesine göre (basit bir enfeksiyondan insanların öldüğü zamanlar), bugünkü yaş ortalamamız % 50 artmış bulunuyor (50 olan yaş ortalaması şimdilerde 75'lerin üzerinde).

Ha, şunu da unutmayalım. Acaba, biz uzun yaşarsak çocuklarımızda uzun yaşar mı? Bu ebklenen bir durum olmakla beraber bazen tersi de olabiliyor. Çünkü, genlerimiz de bazen "bencil" davranıyor. Örneğin, bir annenin karnındaki bebeğe karşı bu "bencil" genler devrede. Onu, fazla büytmeyecek ki, rahat doğurabilsin. Yoksa sonuç her ikisi için de felaket olur. Bu nedenledir ki, yapılı bir anne hiç beklemediğimiz minik bir bebek doğurabiliyor.

Dolayısı ile asırlık insanarın da çocuklarının çoğu toplum ortalamasında bir ömür uzunluğuna sahip. Acaba "bencil genler" burada da  devrede mi?

18 Kasım 2015

100+ yıl yaşamak ister misiniz? (1)

Toplumlarda belli nüfus başına 100 yaş ve üzeri insanların sayısının 2050 yılında bugünkünün 3 katı olacağı tahmin edilmektedir. "Centenerian" denen bu 100 ve üstü yaşındaki "asırlık" insanların sayısı günümüzde hiç de sandığımız kadar çok değil.

Tüm dünyada 100 yaş ve üstü yaşayan insanların bugünkü sayısının yaklaşık 300,000 olduğu düşünülmektedir. 2014 yılında nüfusu 7 milyarı bulan dünyamızda bu "asırlık" insanların toplam nüfusa oranı milyon nüfusta sadece 40 kadardır. Bu orana göre, Türkiye'de sadece 3000 kadar asırlık insan bulunmaktadır. Bir kıyaslama yaparsak, belli nüfusa oranla en çok asırlık insan bulunan Japonya'da 60 bin asırlık insan bulunmakta olup, bu 100 bin nüfusta yaklaşık 40 kişi demektir (dünya ortalamasının 10 katı!)

Toplumdan topluma biraz farklılık gösterse de, genel olarak bir asır ve daha yaşlı kadın sayısı erkeklerden 5 kat fazladır. Biz erkekleri mahveden, cinsiyet hormonlarından başka bir görevi olmayan küçük bir Y kromozomu taşımamızdır. Halbuki, kadınlarda bunun yerine ikinci bir X kromozomu vardır ve birinde bir arıza oluşursa diğeri onun etkisini telafi etmektedir. Erkeklerde ise ne yazık ki sadece bir adet X kromozomu bulunmaktadır.

Bu arada cinsiyeti belirleyenin (yani doğacak çocuğun kız mı ya da erkek mi olacağını) sadece baba olduğunu da bilmemiz gerekir.Dolayısı ile 5 kız sahibi olup da, eşim erkek doğurmuyor deyip yeniden evlenen veya kuma getiren erkeler için bu beyhude bir çaba!

Gelelim konumuz asırlık insanlara.

  • Asırlık insanların ortak özelikleri var mı?
  • Uzun yaşamın en önemli faktörleri (genetik ve çevresel) neler?
  • Son çalışmalar neyi işaret ediyor?
Bunlar ve diğer hepsi bir sonraki yazımızın konusu ...

16 Kasım 2015

Bağırsağımız Beynimizdir!

Son çalışmalar, bağırsak floramızın (bağırsaklarımızda yaşayan bakteri, virüs vd mikroorganizmalar) kişiliğimizi şekillendirme konusunda büyük pay sahibi olduğunu ortaya koymaktadır. Hatta bu görüşün en ileri haline göre, bizler bağırsaklarımızda yaşayan bu mikropların kölesiyiz: onalar bize neyi emrediyorsa onu düşünüyor ve yapıyoruz.

Örneğin, obezite, şeker hastalığı, kanser ve hatta günlük moralimizde bile bağırsaklarımızda yaşayan bu görünmeyen ortaklarımızın rollerinin olduğu düşünülmektedir. Her ne kadar bize görünmezlerse de, vücudumuzdaki bu küçük misafirlerinin kendi hücrelerimizin 10 katı olduğu saptanmıştır (ergin bir vucutta 200 trilyon hücre, 2 katirliyon mikrop bulunduğu hesaplanmaktadır). Dolayısı ile, bazılarına göre vücdümuzun esas ev sahipleri mikroplar, azınlık olan kendi hücrelerimiz ise misafir konumundadır.

Biyokimya konusunda çalışanlar bilirler. Vücudumuzun sağlıklı olması ve devam etmesi için gerekli 20 amino asitten (proteinlerin yapı taşları) ancak yarısını yapabiliyoruz. Vitaminlerin ise hiçbirini yapamayız. Dolayısı ile bu amino asit ve vitaminleri bağırsaklarımızda yaşayan bu faydalı mikroplar yapıp bize sunarlar ya da bunları dışarıdan besinle almamız gerekir. Dolayısı ile sağlıklı bir yaşam için, sağlıklı bir bağırsak florasına sahip olmak gerekir. Hafif bir soğuk algınlığı için hemen antibiyotiklere sarılıp, avuç avuç ilaç almak ve az sayıda raydan çıkmış kötü mikrop için bu faydalı mikropları da vücudumuzdan süpürüp atmak ileride bize pahalıya mal olabilir.

Günümüzde, sağlıklı insanların bağırsak florasındaki faydalı mikropları hasta insanlara nakleden tedaviler bile ortaya çıkmıştır. Probiyotik yoğurtları veya hapları tüketmemizin esas sebebi de bağırsak floramızı tekrar düzeltmektir.

Yazımın başlığı olan "Bağırsağımız Beynimizdir!"e gelince. Gerçekte, bazı virüsler hariç hiç bir mikrop kan-beyin bariyerini geçmez ve doğrudan beyinle temasa gelmezler. Ancak, bağırsaklarımızda yaşayan bu mikropların ürettiği maddeler kanla taşınarak beynimize gelir ve gelen maddenin çeşidine göre beynimizi, düşüncemizi, zekamızı, hafızamızı, hasılı sağlığımızı iyi veya kötü yönde etkiler.

Öreneğin, serotonin, dopa, dopamin gibi hormonların mutluluk, canlılık ve güçlü bir hafıza oluşmasında önemli rolleri var ve bunların iki ünemli üretim yeri var: beyin ve bağırsak. Bağırsak floramız tarafından da yapılan bu şuur şekillendiriciler kana verilir ve beynimize gelir ve orada etkilerini gösterirler. Yani kısaca sağlıklı bir bağırsak florasına sahip ol, mutlu ol.

Bu konuda sayısız örnekten biri de bu mikroplar tarafından "bütirat" yapılmasıdır.  Bir çeşit yağ asiti olan bütirat sinir hücreleri arasındaki bağlantıyı güçlendirerek, kan-beyin bariyerini kuvvetlendirerek sağlıklı bir sinyal transferi sağlar.

Kötü mikropların ise benzer şekilde yatıkları olumsuz ürünlerle agresiflikten tutun, olağan dışı her tür davaranışımızda rolleri olduğu sanılmaktadır.

İnsan Mikrobiom Projesi, genom projesi gibi insanın bağırsak sisteminde (mide dahil) bulunan tüm mikropların genomlarının aydınlatılmasını hedef alıyor. Ancak, "İnsan Genom Projesi"ne kıyasla, "İnsan Mikrobiom Projesi" çok daha zor görünüyor. İnsan Genom Projesinin sonuçları bizlerin genom seviyesinde %99.99 benzer olduğumuzu ortaya koydu. Ancak, mikroplarımızla biri birimize o kadar da benzemiyoruz. Diğer bir deyimle, kimsenin bağırsağındaki mikroplar kimseninkine benzemiyor!!!

Dolayısı ile sormadan edemiyor insan. Acaba fiziki ve davranışsal karakterlerimiz genlerimizden çok mikroplarımızla mı belirleniyor?

13 Kasım 2015

Alzheimer hastalığı bulaşıcı mı?

 Alzheimer hastalığı bir çeşit sinir hasarı olup, ortaya çıktığı insanlarda gittikçe ağır bir vaka olarak seyreder ve en önemli belirtileri gittikçe ağırlaşan hafıza ve bilinç kaybıdır. Hastalığın büyük ölçüde genetik temelli olduğu ve birçok genle ilişkili olduğu sanılmaktadır. Patolojik bulguların en önemlisi, beyin hücreleri olan nöronlarda (sinir hücreleri) amiloid proteininin birikmesi ve bu hücrelerin elastikiyetini (ve dolayısı ile sinyal akışını) kaybetmesine sebep olmasıdır.  

Son çalışmalar, boy problemi olan ve bu nedenle “büyüme hormonu” tedavisi gören çocukların küçük bir kısmında 40-50 yaşlarına vardıklarında Alzheimer belirtileri olduğunu göstermiştir. Bu hormon, 1980’den önce kadavralar kullanılarak beynin alt tarafında yer alan hipofiz (pituitar) bezinden saflaştırılıyordu. Ancak, bu saflaştırma sırasında hormonun insanlarda Creutzfeldt–Jakob hasatlığına sebep olan “prion” proteinleri ile kirlendiği (kontaminasyon) ve bunun sonucu hormon tedavisi görenlerde amiloid plakaların yapılmasının tetiklediği düşünülmektedir.

Bilindiği gibi enfektif prionlar,  beyindeki normal prion proteinlerini de enfektif prionlara dönüştürürler. 1980’lerde Avrupa’yı (özellikle İngiltere) kasıp kavuran, prionların sebep olduğu ve hayvanların beyinlerini sünger gibi delik-deşik ettiği “deli dana hastalığı”nı birçok insan hatırlıyordur.  Creutzfeldt–Jakob hasatlığı deli dana hastalığının insanlardaki şeklidir.

Alzheimer hastalığında, amiloid yığılmasının hormon tedavisi sırasında prionlarla kontamine olan hormondan kaynaklandığı düşünülmektedir. Hastalığın hormon tedavisi sonrası belirtilerini göstermesi (inkübasyon süresi) yaklaşık 5- ila 40 yıl arasında değişmektedir.


Bu çeşit bir bulaşmanın (yani prion bulaşması) cerrahi aletler ve kan yolu ile hormon tedavisi görmeyen insanlarda da olabileceği ihtimaller arasındadır.  

11 Kasım 2015

İnsanda kaç gen ve kaç çeşit protein var?

Genlerin birkaç farklı türü vardır. Kimisi proteinleri kodlar, bazısı tRNA ve ribozomal RNA gibi RNA'ları kodlar, bazısı ise küçük katalitik RNA'ları kodlar. Şimdi biliyoruz ki, bazı genler ise henüz fonksiyonu bilinmeyen çeşitli düzenleyici kodlama yapmayan RNA'lar (örn., lncRNA’lar) kodlar. Genomumuzda 21,000 kadar potansiyel fonksiyonel lncRNA varsa da, bunların biyolojik önemi henüz tam belli değildir.


Her ne kadar biyologlar genel olarak genlerle proteinleri bağdaştırırlarsa da, binlerce genin son ürünü “kodlama yapmayan” RNA’lardır. Örneğin, taşıyıcı ya da transfer RNA’lar adaptör RNA türleri olup, RNA’nın üçlü (triplet) baz kodunu proteinlerin amino asit koduna çeviriler (buna translasyon denir). Ribozomal RNA  (rRNA)’lar da translasyon düzeneğinin esas molekülleridir. Proteinlere kodlanan mesajcı RNA (mRNA)’ların, ribozomlarda bulunan rRNA’lar sayesinde oraya ribozomlara yerleştiklerini biliyoruz. Hatta, son çalışmalar ribozomlarda iki amino asit arasında kurulan peptid bağının protein yapıdaki enzimlerle değil, bir rRNA (katalitik RNA) türü ile kurulduğunu göstermektedir. Küçük nükleolar RNA (çekirdekçikteki küçük RNA) türleri çekirdekçikte rRNA işlemede ve baz modifikasyonunda görev alırlar. Küçük nüklear RNA’ların intron kesip çıkarmada görevi olan splaysozomda görev aldıkları bilinmektedir.


Diğer kodlama yapmayan RNA’lar içinde telomeraz RNA’sı ve 7SL sinyal tanıma partikülündeki RNA gibi biyokimyasal fonksiyonu bilenenler olduğu gibi, X kromozomu dozu ayarlamada rolü olan Xsit RNA’sı ve ribozomun neredeyse 3 katı büyüklüğü olan ancak işlevi bilinmeyen kubbeli ribonukleoprotein kompleksindeki küçük RNA’lar da bulunmaktadır.

Bundan dolayı, insan genomundaki genlerin sayısını tahmin etmek zordur. Geçen 20 yıl boyunca, insan genomundaki protein kodlayan genlerin sayısı yaklaşık 30,000’den 20,000’e kadar düştü. Güncel hesaplamalar, proteinler için yaklaşık 20,000 gen ve fonksiyonel RNA'lar için yaklaşık 5000 gen olduğunu göstermektedir. Kütle spektrometresi tekniği ve iyi açıklamalı genom dizilerinin varlığı sayesinde,  protein kodlayan genlerinin % 85’i çeşitli deneylerle tespit edilmiştir.

Yaklaşık 2,400 genin protein ürününün tüm hücrelerde bulunduğu belirlendi. Bunlara, "housekeeping" (hücreyi idame eden) genler denmektedir. Ancak bu genlerin sayılarının çok daha fazla olduğu (10,000 kadar) düşünülmektedir. Housekeeping genlerin transkripsiyon, translasyon, DNA replikasyonu, mitokondri oluşumu, temel metabolizma, zarda özel görevleri olan proteinleri yaptıkları bilinmektedir. 

Bazı genler ise sadece bazı dokuları yapan hücrelerde protein kodlar. Bu nedenle vücudumuzda yapı ve işlevi farklı olan yaklaşık 200 kadar hücre (örn. Sinir hücresi, kan hücreleri, deri hücresi, kas hücresi, vs) bulunur. Bazı genler, gelişme sırasında sınırlı bir zaman için ifade edilir. Bazı genler ise “yalancı genler"dir ve işlevsel bir protein yapmazlar. Bu genler protein kodlasa bile, o proteinin hücrede bir görevi yoktur. Diğer bir deyimle, genomumuzda nasıl ki “çöp ya da artık DNA varsa” benzer şekilde “çöp protein” de bulunabilir.
İnsan proteomu (bir hücredeki tüm protein çeşitleri), genoma göre oldukça büyük bir zenginliğe sahiptir. Genomumuz tüm hücre çeşitlerimizde stataik bir yapı gösterirken, proteom profilimiz hücre çeştleri arasında oldukça dinamik bir yapı göztermektedir. Bazı hücrelerimizde (örn. kırmızı kan hücreleri) protein çeşidi gen saysından bile azken, bazı hücrelerde (örn. karaciğer hücreleri) protein çeşitliliğinin milyonları bulabildiği tahmin edilmektedir.


Sonuç olarak, insan genomunda en az 17,000-18,000 protein kodlayan gen mevcut olup, bu sayının 20,000’den çok da büyük olduğu sanılmamaktadır. Ancak, genomun oldukça dinamik yapısı ve “alternatif ifade” ile hücrenin cinsine bağlı olarak protein sayısının bunun 5 katı bile olabileceği tahmin edilmektedir.